Dinic
网络流的操作
最大流
#include<bits/stdc++.h>
using namespace std;
#define N 210
#define M 5010
#define INF 0x3f3f3f3f
int n,m,S,T;
vector<int>head,to,nxt,val;
void join(int u,int v,int w)
{
nxt.push_back(head[u]);
head[u]=to.size();
to.push_back(v);
val.push_back(w);
}
int dep[N],cur[N];
queue<int>q;
bool bfs(int s,int t)
{
memset(dep,0,sizeof(dep));
dep[s]=1;
while(!q.empty()) q.pop();
q.push(s);
while(!q.empty())
{
int u=q.front();q.pop();
for(int i=head[u];i!=-1;i=nxt[i])
{
if(val[i]&&!dep[to[i]])
{
dep[to[i]]=dep[u]+1;
q.push(to[i]);
}
}
}
return dep[t];
}
int dfs(int u,int t,int f)
{
if(u==t) return f;
int i;
for(int i=cur[u];i!=-1;i=nxt[i])
{
cur[u]=i;
if(val[i]&&dep[to[i]]==dep[u]+1)
{
int tmp=dfs(to[i],t,min(f,val[i]));
if(tmp>0)
{
val[i]-=tmp;
val[i^1]+=tmp;
return tmp;
}
}
}
return 0;
}
long long dinic()
{
long long res=0;
while(bfs(S,T))
{
for(int i=0;i<=head.size();++i) cur[i]=head[i];
while(int d=dfs(S,T,INF))
{
res+=d;
}
}
return res;
}
int main()
{
scanf("%d%d%d%d",&n,&m,&S,&T);
head.resize(n+1,-1);
for(int i=1;i<=m;++i)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
join(u,v,w);
join(v,u,0);
}
long long ans=dinic();
printf("%lld",ans);
return 0;
}
费用流
然后另外注意,最大费用最大流就是对于最小费用最大流把边上的费用取相反数,然后答案也取相反数就行。
#include<bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define N 5010
#define M 1000010
int n,m,S,T;
int dis[N],cur[M];
bool vis[N];
vector<int>head,nxt,to,val,cost;
int ret=0;
void join(int u,int v,int w,int c)
{
nxt.push_back(head[u]);
head[u]=to.size();
to.push_back(v);
val.push_back(w);
cost.push_back(c);
}
queue<int>q;
bool spfa(int s,int t)
{
memset(dis,INF,sizeof(dis));
memset(vis,0,sizeof(vis));
vis[s]=1;q.push(s);dis[s]=0;
while(!q.empty())
{
int u=q.front();q.pop();vis[u]=0;
for(int i=head[u];i!=-1;i=nxt[i])
{
if(val[i]&&dis[to[i]]>dis[u]+cost[i])
{
dis[to[i]]=dis[u]+cost[i];
if(!vis[to[i]])
{
vis[to[i]]=1;
q.push(to[i]);
}
}
}
}
return dis[t]!=INF;
}
int dfs(int u,int t,int f)
{
if(u==S) memset(vis,0,sizeof(vis));
if(u==t) return f;
vis[u]=1;
for(int i=cur[u];i!=-1;i=nxt[i])
{
cur[u]=i;
if(!vis[to[i]]&&val[i]!=0&&dis[to[i]]==dis[u]+cost[i])
{
int tmp=dfs(to[i],t,min(f,val[i]));
if(tmp>0)
{
ret+=tmp*cost[i];
val[i]-=tmp;
val[i^1]+=tmp;
return tmp;
}
}
}
vis[u]=0;
return 0;
}
int mcmf()
{
int ans=0;
while(spfa(S,T))
{
for(int i=0;i<=to.size();++i) cur[i]=head[i];
while(int d=dfs(S,T,INF))
{
ans+=d;
}
}
return ans;
}
int anss=0;
int main()
{
scanf("%d%d%d%d",&n,&m,&S,&T);
head.resize(2*m+2,-1);
for(int i=1;i<=m;++i)
{
int u,v,w,c;
scanf("%d%d%d%d",&u,&v,&w,&c);
join(u,v,w,c);
join(v,u,0,-c);
}
anss=mcmf();
printf("%d %d",anss,ret);
return 0;
}